
 1

Data Logging

Collection and Storage

Fermilab
Beams Division

Accelerator Controls Department

Kevin Cahill

Version 1.1
October 7, 2002

Architecture

Components
There are several data logging domains utilizing varying strategies to collect accelerator
data for viewing.

Distribution
The data logging components are distributed across the control system to maximize the
control system’s available CPU and disk resources.

Operating Systems and Languages

The older data logging components are written in the C language and run under the VMS
operating system. The newer data logging components are written in Java and run under
the Solaris operating system

Stored Data

The VMS data loggers log single precision DEC floating-point values with an integer
timestamp with one second resolution.

The Java data loggers log double precision IEEE floating-point values with a long
timestamp with one millisecond resolution.

 2

Lists

A data logger supports twelve (12) lists of devices where each list may contain sixty (60)
device names. Collection rates and space allocation is list based.

Buckets

Data loggers write and read a bucket of data (250 timestamps and values) to improve
write and read performance.

Disk Management

Each list is assigned a number of buckets, e.g. 50,000. As each bucket of data is written,
a bucket number assigns a place in a circular, ordered list of buckets where the next
bucket written for a list overwrites the oldest logged data for that list.

The sum of the bucket assignments of all the lists determines the number of Gigabytes of
disk used by the data logger.

Database

The VMS data loggers utilize a commercial, source code based hierarchical file system.

The Java data loggers utilize MySQL, a public domain relational database. A single
MySQL database table is limited to four (4) Gigabytes. Twelve (12) lists of 50,000
buckets results in a database table size of four (4) Gigabytes. Java data loggers are being
converted to utilize one database table per list. Most converted Java data loggers will be
restricted to use no more than the available thirty (30) Gigabytes for data logging.

Backups
Data loggers are not backed up. Disk problems are infrequent but can cause a loss of
data.

 3

Configuring a Data Logger

Page D43, Lumberjack Devices
This application page displays the configuration of a data logger. Use the Pgm_Tools
menu to list authorized people to modify data logger configurations.

 4

Adding a Data Logger
Steps include:

Select an available node. New data loggers are assigned to Java nodes.
Choose a name.
Choose list rates and names.
Allocate the number of buckets for each list.

Increasing a List’s Bucket Allocation
A list will circularly wrap in a longer period of time when assigned more buckets. Be
aware the increase will not take effect until the current bucket assignment’s value passes
the prior bucket limit.

Decreasing a List’s Bucket Allocation
Decreasing a list’s bucket allocation may make more buckets available for other lists.
The database size does not decrease until the space is reclaimed. In general, one should
expect that the list’s database table will be dropped and recreated resulting in the loss of
logged data for that list when decreasing bucket size.

Managing Space
Thoughtful space consideration for the long term is suggested. Increased bucket
allocations do not immediately effect wrap time, and decreasing bucket size is likely to
clear a database table. A four (4) Gigabyte database can support 12 lists of 50,000
buckets. A thirty (30) Gigabyte available disk can support 4.5E6 buckets, but no list may
contain more than 0.6E6 buckets (database table limit). A maximally sized 1 Hertz list
with a full complement of 60 devices will wrap in (600,000 buckets * 250
points/bucket)/(60 list entries * 86400 seconds/day) or 29 days.

Wrap times are directly proportionate to the number of buckets assigned to the list and
inversely proportionate to the number of items in the list and the rate items are being
logged.

A device list may contain more than 60 devices if some of the entries specify array
devices. Each element of an array consumes the space of a device.

 5

Data Collection

Periodic
The fastest continuous rate is 1 Hz. The slowest continuous rate is unlimited.

Hard Event Collection
Collection on Tevatron clock event is possible if the target front-end supports collection
on clock event on VMS logger Clock or any Java-based data logger.

Soft Event Collection
Soft event collection is utilized for target front-ends that do not support collection on
Tevatron clock and for all collections on Tevatron clock event plus delay and for all
collections on a state sransition event (plus delay) since the data acquisition protocol
cannot express collection on Tevatron clock event plus delay or on state transition.

Soft event collection is conducted using one-shot data collection upon detection of the
event and consequently may suffer a loss of accuracy for very volatile signals. Since
one-shot reads encompass more network traffic and front-end CPU cycles, Java data
loggers limit soft event collection to no faster than one Hertz, VMS loggers even slower.

Specifying the Either Event Collection
A data collection event string such as “e,2,h,0” is ‘read’ as on hard event 02 with no
delay. The string “e,2,s,0” is ‘read’ as on soft event 02 with no delay. The string
“e,2,e,0” is ‘read’ as on hard event if the front-end supports it, otherwise on soft. When
specifying list rates, a hard event string will not collect data from a front-end that does
not support Tevatron clock, and a soft event string will always collect one-shot data
shortly after detection of the event, but an either event string will proceed as hard when
possible, soft otherwise.

Client Events
Lists may have a name and rate that specify a client event. Those lists do not have a data
collection job assigned by the logger but receive values to log a client process. Examples
include clock, state, and setting loggers.

 6

Specialized Data Loggers

ArkIv
The archive logger begins a data collection at midnight from other loggers for logged
values at a 15 minute interval minimum.

BLM
This client logger logs Booster loss monitor and Chipmunk readings.

CBSDA
The client logger logs shot data from completed Collider shots.

EventC
This client logger logs Tevatron clock events.

EventV
This client logger logs software state transition events.

PBSDA
This client logger logs shot data from completed Pbar transfer shots.

Sets
This client logger logs settings across the control system.

Snap1
This logger logs snapshot data.

State
This client logger logs software state transitions (VMS).

Retrieval

Timestamps
Java-based data loggers with multiple databases when logging a device at multiple rates
will return sets of data that are not strictly time-ordered. The databases will be searched
serially, returning data from each database in turn as data matches the user’ s request.

The Java-based data loggers support the specification the list of interest for a retrieved
device and support the specification of the desired logged event string in the request
structure. Application programs do not yet implement this option.

 7

Performance
Java-based data loggers are faster than their VMS counterparts, and retrieval to a VMS
client from Java data loggers also suffers from date and floating point conversions

Data Return Ordering
Java-based data loggers use multiple databases to store data. The databases are searched
in list order. If a device moves from a higher numbered list to a lower numbered list and
retrieval is specified over a time period encompassing both list’ s data, the recent data will
be returned before the older data. This effect is also possible in client loggers where list
allocation moves at run time to spread the resource usage as equally as possible across all
client logger lists.

